

Remainder and Factor Theorem

IP/O Level Math

Topic Summary

Definition of Polynomial

A **polynomial** is a mathematical expression of one or sum of algebraic terms each of which is either a constant term or a variable term with whole number exponent.

Degree

The **degree** of a polynomial in one variable is the highest exponent of the variable term in the polynomial.

Solving problems related to equality of polynomials

Comparing coefficients

Example:

Let
$$P(x) = 6x^3 - 14x^2 + 19x - 5$$
 and let $Q(x)$ be some polynomial. Find the constants A,
B and C, where appropriate, in the following equation.
 $P(x) = (3x-1)(Ax^2 + Bx + C)$

Workings: $(3x - 1)(Ax^2 + Bx + C) = 3Ax^3 + 3Bx^2 + 3Cx - Ax^2 - Bx - C$ [expansion] $= 3Ax^3 + (3B - A)x^2 + (3C - B)x - C$ [group like terms] By comparison, [compare the expanded term with the given P(x) from the question] 3A = 6 A = 2 3B-A = -14 B = -4C = 5

Numerical substitution

Example:

Let $P(x) = 6x^3 - 14x^2 + 19x - 5$ and let Q(x) be some polynomial. Find the constants A, B and C, where appropriate, in the following equation. (b) P(x) = (x-1)(x-2)Q(x) + Ax + B

Workings: Let Q(x) = Cx - D [substitution] $(x - 1)(x - 2)(Cx - D) + Ax + B = Cx^3 - 3Cx^2 + 2Cx + Dx^2 - 3DX + 2D + Ax + B$ $= Cx^3 + (D - 3C)x^2 + (2C - 3D + A)x + 2D + B$ [expand and group like terms] By comparison, [compare the expanded term with the given P(x) from the question] C = 6 D - 3C = -14 D = 4 2D + B = -5 B = -132C - 3D + A = 19

Long division for polynomials				
 We carry out long division only to improper fraction (of polynomials) – A fraction whose numerator is of degree greater or equal to the denominator. The remainder always has a degree lower than the divisor. 				
Example: Divide the expression $3x^2 + 5 - 2x$ by $x + 3$.				
STEP 1	Write the dividend $3x^2 - 2x + 5$ and the divisor x + 3 in the division format, in descending powers of x.	$x+3\overline{\big)}3x^2-2x+5$		
STEP 2	Identify the term 3x such that multiply it to $x + 3$ gives the highest power term $3x^2$ in the dividend. Write $3x$ in the quotient position.	$3x + 3\overline{\smash{\big)}3x^2 - 2x + 5}$		
STEP 3	Multiply $3x$ by $x+3$ and write the answer below the dividend, align the same power terms in the same column.	$3x$ $x+3\overline{\smash{\big)}3x^2-2x+5}$ $3x^2+9x$		
STEP 4	Subtract the polynomial $3x^2 - 2x + 5$ with $3x^2 + 9$ and write the answer below in the next line, aligning the same power terms in the same column.	$3x x+3)3x^2-2x+5 (-) 3x^2+9x -11x+5$		
Repeat STEP 2 to STEP 4 till the answer obtained has a lower degree than the divisor.				
STEP 5- 2	Identify the next monomial as -11 because $-11(x+3) = -11x \cdots$ which matches the highest power term in $-11x+5$. Write -11 after $3x$ in the quotient position as shown.	$ \frac{3x-11}{x+3)3x^2-2x+5} \\ \frac{3x^2+9x}{-11x+5} $		
STEP 5- 3	Multiply the monomial -11 by the divisor $x+3$ and write the answer below the dividend, align the same power terms in the same column.	$ \frac{3x-11}{x+3)3x^2-2x+5} \\ \frac{3x^2+9x}{-11x+5} \\ -11x-33 $		
STEP 5- 4	Subtract $-11x+5$ with $-11x-33$ and obtain 38 whose power is lower than that of the divisor. The division process stops. The term 38 is called the remainder and $3x-11$ the quotient. Finally, we have $\frac{3x^2-2x+5}{x+3} = 3x-11 + \frac{38}{x+3}$	$3x - 11$ $x + 3\overline{\smash{\big)}3x^2 - 2x + 5}$ $3x^2 + 9x$ $-11x + 5$ $(-) -11x - 33$ -38		

Remainder Theorem

The remainder theorem allows us to find the remainder without doing long division. When a polynomial P(x) is divided by a linear divisor ax+b, the remainder is $P\left(-\frac{b}{a}\right)$.

Factor Theorem

A polynomial P(x) has a factor ax+b if and only if $P\left(-\frac{b}{a}\right)=0$. We can also say that P(x) is **divisible** by ax+b.

In terms of equation, we say that $x = -\frac{b}{a}$ is a **root** of P(x)=0.

Some special cases when $P(x)$ is divided by $D(x)$			
Divisor $D(x)$	Remainder $R(x)$	Method to find $R(x)$	
x - a	P(a)	Substitute $x = a$ into $P(x)$. Remainder = $P(a)$. \underline{OR} *Use long division to divide $P(x)$ by $x - a$	
(x-a)(x-b) in factorised form	Ax + B	Let $R(x) = Ax + B$ Substitute $x = a$: $P(a) = aA + B$ and substitute $x = b$: $P(b) = bA + B$. Solve for A and B to find the remainder. <u>OR</u> *Expand $(x - a)(x - b)$ and use long division to divide $P(x)$ by (x - a)(x - b).	
$x^2 + cx + d$ cannot be factorised further	Ax + B	*Use long division to divide $P(x)$ by $x^2 + cx + d$ to find the remainder.	

• Note that use of long division is complicated or not advisable if the polynomial (dividend) contains one or more unknown coefficients.

• To overcome polynomial with unknown coefficients, write P(x) = D(x)Q(x) + R(x) and use the **method of numerical substitution**.

Remainder and Factor Theorem Practice Questions

- 1. When $2x^4 6x^2 + 3x + 1$ is divided by $x^2 3x 4$, the remainder is Ax + B.
 - (a) Find the values of the constants *A* and *B*.
 - (b) Find the remainder when the polynomial is divided by $x^2 + 2x + 1$.
- 2. Solve the equation $2x^3 5x^2 + 4 = 0$, leaving your answers in exact form.

3. Solve the equation $2x^3 - 9x^2 + 11x - 2 = 0$ giving your answers correct to 2 decimal places where necessary. [4]

Hence solve the following equations

- (a) $2(y+2)^3 9(y+2)^2 + 11(y+2) 2 = 0,$
- (b) $2z^3 + 9z^2 + 11z + 2 = 0.$
- 4. One of the factors of $x^2 5x + 6$ is a factor of $f(x) = x^3 + hx^2 4x + 3$ where *h* is an integer. Find the common factor and the value of *h*, hence find the remainder when f(x) is divided by 3x + 2.

Answers

1. (a) A = 87, B = 81 (b) 7x+1

2.
$$x = 2, \frac{1}{4} \pm \frac{1}{4}\sqrt{17}$$

- 3. x = 2, 2, 28, 0.22 (a) y = 0, -1.78, 0.28 (b) z = -2, -2, 28, -0.22
- 4. common factor = x 3, h = -2; $4\frac{13}{27}$

