Remainder and Factor Theorem

IP/O Level Math

Topic Summary

Definition of Polynomial

A polynomial is a mathematical expression of one or sum of algebraic terms each of which is either a constant term or a variable term with whole number exponent.

Degree

The degree of a polynomial in one variable is the highest exponent of the variable term in the polynomial.

Solving problems related to equality of polynomials

Comparing coefficients

Example:

Let $\mathrm{P}(x)=6 x^{3}-14 x^{2}+19 x-5$ and let $\mathrm{Q}(x)$ be some polynomial. Find the constants A, B and C, where appropriate, in the following equation.
(a)

$$
\mathrm{P}(x)=(3 x-1)\left(A x^{2}+B x+C\right)
$$

Workings:
$\begin{array}{rlrl}(3 x-1)\left(A x^{2}+B x+C\right) & =3 A x^{3}+3 B x^{2}+3 C x-A x^{2}-B x-C & & \text { [expansion] } \\ & =3 A x^{3}+(3 B-A) x^{2}+(3 C-B) x-C & \text { [group like terms] }\end{array}$
By comparison, [compare the expanded term with the given $\mathrm{P}(\mathrm{x})$ from the question]
$3 \mathrm{~A}=6$
$\mathrm{A}=2$
$3 \mathrm{~B}-\mathrm{A}=-14$
$B=-4$
$\mathrm{C}=5$

Numerical substitution

Example:

Let $\mathrm{P}(x)=6 x^{3}-14 x^{2}+19 x-5$ and let $\mathrm{Q}(x)$ be some polynomial. Find the constants A, B and C, where appropriate, in the following equation.
(b)

$$
\mathrm{P}(x)=(x-1)(x-2) \mathrm{Q}(x)+A x+B
$$

Workings:
Let $Q(x)=C x-D \quad$ [substitution]
$(x-1)(x-2)(C x-D)+A x+B=C x^{3}-3 C x^{2}+2 C x+D x^{2}-3 D X+2 D+A x+B$ $=C x^{3}+(D-3 C) x^{2}+(2 C-3 D+A) x+2 D+B \quad$ [expand and group like terms]
By comparison, [compare the expanded term with the given $\mathrm{P}(\mathrm{x})$ from the question]
C $=6$
D $-3 C=-14$
D $=4$
$2 \mathrm{D}+\mathrm{B}=-5$
B $=-13$
$2 C-3 D+A=19$
$\mathrm{A}=19$

Long division for polynomials

- We carry out long division only to improper fraction (of polynomials) - A fraction whose numerator is of degree greater or equal to the denominator.
- The remainder always has a degree lower than the divisor.

Example: Divide the expression $3 x^{2}+5-2 x$ by $x+3$.

STEP 1	Write the dividend $3 x^{2}-2 x+5$ and the divisor $\mathrm{x}+3$ in the division format, in descending powers of x.	$x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 }$
STEP 2	Identify the term 3 x such that multiply it to $\mathrm{x}+3$ gives the highest power term $3 x^{2}$ in the dividend. Write $3 x$ in the quotient position.	$\begin{gathered} 3 x \\ x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 } \end{gathered}$
STEP 3	Multiply $3 x$ by $x+3$ and write the answer below the dividend, align the same power terms in the same column.	$\begin{gathered} 3 x \\ x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 } \\ 3 x^{2}+9 x \end{gathered}$
STEP 4	Subtract the polynomial $3 x^{2}-2 x+5$ with $3 x^{2}+9$ and write the answer below in the next line, aligning the same power terms in the same column.	$\begin{gathered} 3 x \\ x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 } \\ (-) \frac{3 x^{2}+9 x}{-11 x+5} \end{gathered}$

Repeat STEP 2 to STEP 4 till the answer obtained has a lower degree than the divisor.

$\begin{aligned} & \text { STEP 5- } \\ & 2 \end{aligned}$	Identify the next monomial as -11 because $-11(x+3)=-11 x \cdots$ which matches the highest power term in $-11 x+5$. Write -11 after $3 x$ in the quotient position as shown.	$\begin{gathered} \frac{3 x-11}{x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 }} \\ \frac{3 x^{2}+9 x}{-11 x+5} \end{gathered}$
${ }_{3}$ STEP 5-	Multiply the monomial -11 by the divisor $x+3$ and write the answer below the dividend, align the same power terms in the same column.	$\begin{aligned} & 3 x-11 \\ & x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 } \\ & \frac{3 x^{2}+9 x}{-11 x+5} \\ & -11 x-33 \end{aligned}$
$\begin{aligned} & \text { STEP 5- } \\ & 4 \end{aligned}$	Subtract $-11 x+5$ with $-11 x-33$ and obtain 38 whose power is lower than that of the divisor. The division process stops. The term 38 is called the remainder and $3 x-11$ the quotient. Finally, we have $\frac{3 x^{2}-2 x+5}{x+3}=3 x-11+\frac{38}{x+3}$.	$\begin{array}{r} 3 x-11 \\ x + 3 \longdiv { 3 x ^ { 2 } - 2 x + 5 } \\ \frac{3 x^{2}+9 x}{-11 x+5} \\ \frac{(-)-11 x-33}{38} \end{array}$

Compiled by Future Academy (www.fa.edu.sg)

Remainder Theorem

The remainder theorem allows us to find the remainder without doing long division.
When a polynomial $\mathrm{P}(x)$ is divided by a linear divisor $a x+b$, the remainder is $\mathrm{P}\left(-\frac{b}{a}\right)$.

Factor Theorem

A polynomial $\mathrm{P}(x)$ has a factor $a x+b$ if and only if $\mathrm{P}\left(-\frac{b}{a}\right)=0$.
We can also say that $\mathrm{P}(x)$ is divisible by $a x+b$.
In terms of equation, we say that $x=-\frac{b}{a}$ is a root of $\mathrm{P}(x)=0$.

Some special cases when $\mathrm{P}(x)$ is divided by $\mathrm{D}(x)$

Divisor $\mathrm{D}(x) \quad$ Remainder $\mathrm{R}(x)$
Method to find $\mathrm{R}(x)$

$x-a$	$\mathrm{P}(a)$	Substitute $x=a$ into $\mathrm{P}(x)$. Remainder $=\mathrm{P}(a)$. OR *Use long division to divide $\mathrm{P}(x)$ by x a.
$(x-a)(x-b) \text { in }$ factorised form	$A x+B$	Let $\mathrm{R}(x)=A x+B$ Substitute $x=a: \mathrm{P}(a)=a A+B$ and substitute $x=b: \mathrm{P}(b)=b A+B$. Solve for A and B to find the remainder. OR *Expand $(x-a)(x-b)$ and use long division to divide $\mathrm{P}(x)$ by $(x-a)(x-b)$.
$x^{2}+c x+d \text { cannot }$ be factorised further	$A x+B$	*Use long division to divide $\mathrm{P}(x)$ by $x^{2}+c x+d$ to find the remainder.

- Note that use of long division is complicated or not advisable if the polynomial (dividend) contains one or more unknown coefficients.

Compiled by Future Academy (www.fa.edu.sg)

- To overcome polynomial with unknown coefficients, write $\mathrm{P}(x)=\mathrm{D}(x) \mathrm{Q}(x)+\mathrm{R}(x)$ and use the method of numerical substitution.

Future Academy

R Remainder and Factor Theorem Practice Questions

1. When $2 x^{4}-6 x^{2}+3 x+1$ is divided by $x^{2}-3 x-4$, the remainder is $A x+B$.
(a) Find the values of the constants A and B.
(b) Find the remainder when the polynomial is divided by $x^{2}+2 x+1$.
2. Solve the equation $2 x^{3}-5 x^{2}+4=0$, leaving your answers in exact form.
3. Solve the equation $2 x^{3}-9 x^{2}+11 x-2=0$ giving your answers correct to 2 decimal places where necessary.
[4]
Hence solve the following equations
(a) $2(y+2)^{3}-9(y+2)^{2}+11(y+2)-2=0$,
(b) $2 z^{3}+9 z^{2}+11 z+2=0$.
4. One of the factors of $x^{2}-5 x+6$ is a factor of $\mathrm{f}(x)=x^{3}+h x^{2}-4 x+3$ where h is an integer. Find the common factor and the value of h, hence find the remainder when $\mathrm{f}(x)$ is divided by $3 x+2$.

Answers

1.

(a) $A=87, B=81$
(b) $7 x+1$
2. $x=2, \frac{1}{4} \pm \frac{1}{4} \sqrt{17}$
3. $x=2,2,28,0.22$ (a) $y=0,-1.78,0.28$ (b) $z=-2,-2,28,-0.22$
4. \quad common factor $=x-3, h=-2 ; \quad 4 \frac{13}{27}$

Compiled by Future Academy (www.fa.edu.sg)

